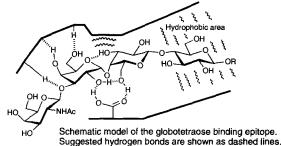
Synthesis of Glycyrrhizin Analogues Containing Fluorinated $\beta(1\rightarrow 2)$ -linked Disaccharides

Naohiko Morishima* and Yoko Mori School of Nursing, Kitasato University, Kitasato, Sagamihara 228, Japan

The fluorinated Glycyrrhizin analogues (1-7) synthesized through the stepwise glycosylation.

Bioorg. Med. Chem. 1996, 4, 1799

PapG Adhesin from E. coli 196 Recognizes the Same

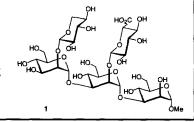

Bioorg. Med. Chem. 1996, 4, 1809

Saccharide Epitope when Present on Whole Bacteria and as Isolated Protein

Ulf Nilsson, Robert T. Striker, Scott J. Hultgren and Göran Magnusson^{a,*}

^aOrganic Chemistry 2, Center for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, S-221 00 Lund, Sweden

^bDepartment of Molecular Microbiology, Box 8230, Washington University, School of Medicine, St Louis, MI 63110, U.S.A.


Bioorg. Med. Chem. 1996, 4, 1819

Synthesis of a Pentasaccharide Corresponding to the Repeating Unit of the Exopolysaccharide from Cryptococcus neoformans Serovar D

Korien Zegelaar-Jaarsveld, Sander A. W. Smits, Gijs A. van der Marel and Jacques H. van Boom*

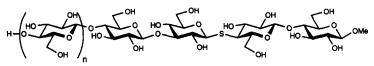
Leiden Institute of Chemistry, Gorlaeus Laboratoria, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands

A stereoselective synthesis is presented for the glucuronic acid containing pentasaccharide 1.

Synthesis and Biological Activities of Three Sulfated

Bioorg. Med. Chem. 1996, 4, 1833

Sialyl Lex Ganglioside Analogues for Clarifying the Real Carbohydrate Ligand Structure of L-Selectin

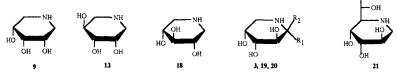

Shiro Komba, Hideharu Ishida, Makoto Kiso and Akira Hasegawa* Department of Applied Bioorganic Chemistry, Gifu University, Gifu 501-11, Japan

Design and Chemoenzymatic Synthesis of Thiooligosaccharide Inhibitors of 1,3:1,4-β-D-Glucanases

Bioorg. Med. Chem. 1996, 4, 1849

Vincent Moreau,^a Josep-Lluis Viladot,^b Eric Samain,^a Antoni Planas^b and Hugues Driguez^a
^aCentre de Recherches sur les Macromolécules Végétales (CERMAV-CNRS), B.P. 53, 38041 Grenoble cedex 9, France
^bLaboratory of Biochemistry, Department of Organic Chemistry, CETS Institut Quimic de Sarrià, 08017-Barcelona, Spain

Tetra-3b, penta-2a, and hexasaccharides 1 have been obtained and tested as inhibitors of *Bacillus* 1,3:1,4-β-D-glucanases.

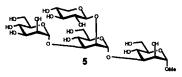

Deoxyiminoalditols from Aldonolactones - V.

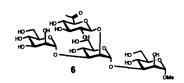
Bioorg. Med. Chem. 1996, 4, 1857

Preparation of the Four Stereoisomers of 1,5-Dideoxy-1,5-iminopentitols. Evaluation of these Iminopentitols and Three 1,5-Dideoxy-1,5-iminoheptitols as Glycosidase Inhibitors

Michael Godskesen,^a Inge Lundt,^{a,*} Robert Madsen^a and Bryan Winchester^b

*Department of Organic Chemistry, The Technical University of Denmark, Building 201, DK-2800 Lyngby, Denmark
bDivision of Biochemistry and Genetics, Institute of Child Health, University of London, 30, Guildford Street, London WC1N
1EH, U.K.



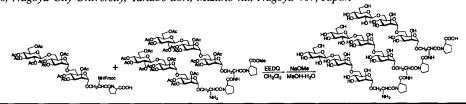

Bioorg. Med. Chem. 1996, 4, 1867

Synthesis of Oligosaccharides Corresponding to Structures found in Capsular Polysaccharides of *Cryptococcus neoformans*—II

Per J. Garegg, Lars Olsson and Stefan Oscarson Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden

Syntheses of tetrasaccharides 5 and 6 are reported.

Synthesis of Glycopeptides with Phytoalexin Elicitor Activity—III. Syntheses of Hexaglycosyl Hexapeptides a

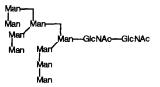

Bioorg. Med. Chem. 1996, 4, 1873

Activity—III. Syntheses of Hexaglycosyl Hexapeptides and a Nonaglycosyl Hexapeptide

Tadahiro Takeda,^{a,*} Takuya Kanemitsu^b and Yukio Ogihara^b

^aKyoritsu College of Pharmacy, Minato-ku, Tokyo 105, Japan

^bFaculty of Pharmaceutical Sciences, Nagoya City University, Tanabe-dori, Mizuho-ku, Nagoya 467, Japan



Glycopeptide Mimics of Mammalian Man_oGlcNAc₂. **Ligand Binding to Mannan-binding Proteins (MBPs)**

Bioorg. Med. Chem. 1996, 4, 1881

Henrik Franzyk," Morten Meldal," Hans Paulsen, Steffen Thiel, Jens Chr. Jensenius and Klaus Bock" Department of Chemistry, Carlsberg Laboratory, Gamle Carlsberg Vej 10, DK-2500 Valby, Copenhagen, Denmark and Institute of Organic Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, D-20146 Hamburg, Germany Department of Medical Microbiology and Immunology, University of Aarhus, Universitetsparken, DK-8000 Århus C, Denmark

was synthesized as a mimic of :

A New Strategy for Stereoselective Synthesis of Sialic **Acid-containing Glycopeptide Fragment**

Bioorg. Med. Chem. 1996, 4, 1901

Zhi-Guang Wang, Xu-Fang Zhang, Yukishige Ito, Yoshiaki Nakahara and Tomoya Ogawa The Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako-shi, Saitama, 351-01 Japan

Protected glyco-amino acid fragment was synthesized by using PhS-carrying thioglycoside 5 as a sialic acid donor. OB_n **BnC**

CO₂Bn R_nC SMa

Bioorg. Med. Chem. 1996, 4, 1909

N-Tetrachlorophthaloyl (TCP) for Ready Protection/Deprotection of Amino Sugar **Glycosides**

John S. Debenham, Shervl D. Debenham and Bert Fraser-Reid Paul M. Gross Chemical Laboratory, Department of Chemistry, Duke University, Durham, NC 27708, U.S.A.

$$\begin{array}{c} \text{BzO} \\ \text{BzO} \\ \end{array} \\ \begin{array}{c} \text{OBz} \\ \text{OPent} \\ \end{array} \\ \begin{array}{c} \text{OH} \\ \text{NTCP} \\ \end{array} \\ \begin{array}{c} \text{OBz} \\ \text{BzO} \\ \end{array} \\ \begin{array}{c} \text{OBz} \\ \text{OO}_2 \\ \text{BzO} \\ \end{array} \\ \begin{array}{c} \text{OBz} \\ \text{OO}_2 \\ \text{BzO} \\ \end{array} \\ \begin{array}{c} \text{OBz} \\ \text{OO}_2 \\ \text{BzO} \\ \end{array} \\ \begin{array}{c} \text{OBz} \\ \text{OO}_2 \\ \text{BzO} \\ \end{array} \\ \begin{array}{c} \text{OBz} \\ \text{OO}_2 \\ \text{BzO} \\ \end{array} \\ \begin{array}{c} \text{OBz} \\ \text{OO}_2 \\ \text{BzO} \\ \end{array} \\ \begin{array}{c} \text{OBz} \\ \text{OO}_2 \\ \text{BzO} \\ \end{array} \\ \begin{array}{c} \text{OBz} \\ \text{OO}_2 \\ \text{BzO} \\ \end{array} \\ \begin{array}{c} \text{OBz} \\ \text{OO}_2 \\ \text{BzO} \\ \end{array} \\ \begin{array}{c} \text{OBz} \\ \text{OO}_2 \\ \text{BzO} \\ \end{array} \\ \begin{array}{c} \text{OO}_2 \\ \text{BzO} \\ \text{OO}_2 \\ \text{BzO} \\ \end{array} \\ \begin{array}{c} \text{OO}_2 \\ \text{BzO} \\ \text{OO}_2 \\ \text{BzO} \\ \end{array} \\ \begin{array}{c} \text{OO}_2 \\ \text{BzO} \\ \text{OO}_2 \\ \text{BzO} \\ \end{array} \\ \begin{array}{c} \text{OO}_2 \\ \text{BzO} \\ \text{OO}_2 \\ \text{BzO} \\ \end{array} \\ \begin{array}{c} \text{OO}_2 \\ \text{BzO} \\ \text{OO}_2 \\ \text{BzO} \\ \end{array} \\ \begin{array}{c} \text{OO}_2 \\ \text{BzO} \\ \text{OO}_2 \\ \text{BzO} \\ \end{array} \\ \begin{array}{c} \text{OO}_2 \\ \text{BzO} \\ \text{OO}_2 \\ \text{BzO} \\ \end{array} \\ \begin{array}{c} \text{OO}_2 \\ \text{BzO} \\ \text{OO}_2 \\ \text{BzO} \\ \end{array} \\ \begin{array}{c} \text{OO}_2 \\ \text{BzO} \\ \text{OO}_2 \\ \text{BzO} \\ \end{array} \\ \begin{array}{c} \text{OO}_2 \\ \text{BzO} \\ \text{OO}_2 \\ \text{BzO} \\ \end{array} \\ \begin{array}{c} \text{OO}_2 \\ \text{BzO} \\ \text{OO}_2 \\ \text{BzO} \\ \end{array} \\ \begin{array}{c} \text{OO}_2 \\ \text{BzO} \\ \text{OO}_2 \\ \text{BzO} \\ \end{array} \\ \begin{array}{c} \text{OO}_2 \\ \text{BzO} \\ \text{OO}_2 \\ \text{BzO} \\ \end{array} \\ \begin{array}{c} \text{OO}_2 \\ \text{BzO} \\ \text{OO}_2 \\ \text{BzO} \\ \end{array} \\ \begin{array}{c} \text{OO}_2 \\ \text{BzO} \\ \text{OO}_2 \\ \text{OO}_2 \\ \text{BzO} \\ \end{array}$$

Unexpected Carbohydrate Cross-binding by Escherichia coli Heat-labile Enterotoxin. Recognition of Human and Rabbit Target Cell

Bioorg. Med. Chem. 1996, 4, 1919

Glycoconjugates in Comparison with Cholera Toxin

K.-A. Karlsson, S. Teneberg, J. Ångström, A. Kjellberg, T. R. Hirst, J. Bergström and H. Miller-Podraza

"Department of Medical Biochemistry, Institute of Medical Biochemistry and Microbiology, Göteborg University, Medicinaregatan 9A, S-413 90 Göteborg, Sweden ^bThe Biological Laboratory, University of Kent, Canterbury, Kent CT2 7NJ, U.K.

The cross-binding was to Galβ4GlcNAcβ-R, in part explained by molecular modeling of the saccharide in the toxin binding site.

Paragloboside - LT complex

Substituted Glycals as Probes of Glycosidase Mechanisms

Bioorg. Med. Chem. 1996, 4, 1929

Ellen C. K. Lai, Sandra A. Morris, Ian P. Street and Stephen G. Withers Department of Chemistry, University of British Columbia, Vancouver, B.C. Canada, V6T 1Z1

Glycals are hydrated by glycosidases by the mechanism shown. A number of substituted glycals were tested as inhibitors and inactivators of several glycosidases. OH OH OH OH OH OH

Novel Aspects of Interaction between UDP-Gal and Bioorg. Med. Chem. 1996, 4, 1939 GlcNAc β-1,4-Galactosyltransferase: Transferability and Remarkable Inhibitory Activity of UDP-(mono-O-methylated Gal), UDP-Fuc and UDP-Man

Tsuyoshi Endo,^a Yasuhiro Kajihara,^b Hisashi Kodama^b and Hironobu Hashimoto^a
^aDepartment of Life Science, Faculty of Bioscience and Biotechnology, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama, 226 Japan and ^bLife Science Research Laboratory, Japan Tobacco Inc., 6-2 Umegaoka, Midori-ku Yokohama, 227 Japan

UDP-2-OMe-Gal can be transferred to GlcNAc β -OMe by β -1,4-GalT. This UDP-Gal analogue, however, has remarkable inhibitory activity, as do the unnatural Leloir donors, UDP-D-Man and UDP-L-Fuc.

Macromolecular Recognition: Effect of Multivalency in the Inhibition of Binding of Yeast Mannan to Concanavalin A and Pea Lectins by Mannosylated Dendrimers

D. Pagé, D. Zanini and R. Roy Department of Chemistry, University of Ottawa, ON, Canada

The synthesis and binding properties of aryl α -D-mannosides are described. These new glycoconjugates can inhibit the binding of yeast mannan to Con A and pea lectins 2000 times better than monosaccharides.

Bioorg. Med. Chem. 1996, 4, 1949

Bioorg. Med. Chem. 1996, 4, 1963

Analysis of the Binding Specificities of Oligomannoside-binding Proteins using Methylated Monosaccharides

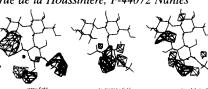
M. C. Chervenak and E. J. Toone* Department of Chemistry, Duke University, Durham, NC 27708, U.S.A.

The thermodynamics of binding of alkylated mono- and disaccharides to the lectins from *Canavalia ensiformis* and *Dioclea grandiflora* are reported.

How do Antibodies and Lectins Recognize Histo-Blood Group Antigens? A 3D-OSAR Study by Comparative Molecular Field Analysis (CoMFA)

Bioorg. Med. Chem. 1996, 4, 1979

Anne Imberty, ** Rosella Mollicone, * Emmanuel Mikros, * Pierre-Alain Carrupt, * Serge Pérez' and Rafael Oriol* ^aLaboratoire de Synthèse Organique, Centre National de la Recherche Scientifique, 2 rue de la Houssinière, F-44072 Nantes


bINSERM U178, Hôpital Paul-Brousse, 94807 Villejuif, France

Department of Pharmacy, University of Athens, Panespistimiopoli, Zografou, GR-15771 Athens, Greece

^dInstitut de Chimie Thérapeutique, BEP, Université de Lausanne, CH-1015 Lausanne, Switzerland

'Ingeniérie Moléculaire, Institut National de la Recherche Agronomique, BP 1627, F-44316 Nantes cedex 03. France

CoMFA analysis of the binding of a monocloonal antibody to H type blood group oligosaccharides.

Bioorg. Med. Chem. 1996, 4, 1989 Synthesis and Conformational Studies of the Tyvelose Capped, Lewis-x Like Tetrasaccharide Epitope of Trichinella spiralis

Jian Zhang, Albin Otter and David R. Bundle Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada

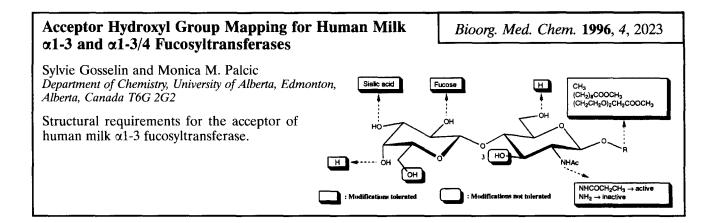
Tetrasaccharide epitopes present in glycoprotein glycans of Trichinella spiralis have been synthesized as Me and TMSEt glycosides with terminal β - (5 and 6) and α -linked tyvelose residues, using monosaccharide synthons such as 12 and 14. NMR data suggest that the chair conformation of the GalNAc residue in the α-linked tetrasaccharide is unusually rigid.

5 R = CH₂CH₂SiMe₃ HO 6 R = Me

Bioorg. Med. Chem. 1996, 4, 2003 **Preparation of Antigens and Immunoadsorbents** Corresponding to the Streptococcus Group A Cell-wall Polysaccharide

France-Isabelle Auzanneau and B. Mario Pinto Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6

A convenient protocol for the synthesis of soluble or polymer-bound glycoconjugates from allyl saccharides is described.


Bioemphase 3M - oligosaccharide] NH(CH₂)₂S(CH₂)₃ - oligosaccharide]_n Protein +NH

Bioorg. Med. Chem. 1996, 4, 2011

New Synthetic Trisaccharide Inhibitors for N-Acetylglucosaminyltransferase-V

P.-P. Lu, O. Hindsgaul, C. A. Compston and M. M. Palcic Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2

The trisaccharide 6a (R = H) was chemically synthesized. The 6'-amino group in 6a was then derivatized by either acylation of alkylation with hydrophobic, hydrophilic, charged, aromatic and potential covalently activating groups. Compound 6a and all the analogues (6b-j) were found to be competitive inhibitors of GlcNAcT-V with K, values ranging from 21 to 297 μ M.

